
S E R G E A Y E R - H E I A - F R – T É L É C O M M U N I C A T I O N S
C L A S S E S I S C - 2 D / / 2 0 2 3 - 2 0 2 4

INTERNET DES OBJETS
RTOS PROGRAMMING FOR THE

INTERNET OF THINGS

WHY A RTOS ?

• RTOS stands for Real-time Operating Systems
• Designed to meet timing constraints

• Hard real-time – critical tasks have to be completed on time
• Soft real-time – may continue finishing the task even missing the

deadline

• The key design requirement is predictability and
determinism

• So is the solution a huge sequential loop ?
• Poor predictability and extensibility

• With RTOS, encapsulate each computation request
into a task and schedule tasks on demand

[Ayr/c.04] ISC-ID-2 // 2023-2024 2

A CASE IN POINT

• GPS based speed limit alarm with moving map
• Sounds alarm when approaching a speed limit change
• Display vehicle’s position on LCD
• Let user confirm automatic speed change
• Log applied speed limit and car’s position

• Tasks:
• Decode GPS information to find current vehicle position
• Check to see if approaching any speed limit change

location
• Record position to flash memory
• Read user input
• Update LCD

[Ayr/c.04] ISC-ID-2 // 2023-2024 3

Dec
Check

Rec

Sw
LCD

Time

Dec
Check

Rec

Sw
LCD

A CASE IN POINT

• How to implement this behaviour in a super loop?
• Do tasks run in the same order every time?
• Allow pre-emption?

• Super-loop implementation is simple but…

• Always run the same schedule, regardless of changing
conditions and relative importance of tasks.

• All tasks run at the same rate. Changing rates requires adding
extra calls to the function (e.g. requiring user input multiple
times)

• Maximum delay is the sum of all task run times.
Polling/execution rate is equal to 1/maximum delay.

[Ayr/c.04] ISC-ID-2 // 2023-2024 4

Dec Check Rec Sw LCD Dec

A CASE IN POINT

• This approach is simple but it has many drawbacks
• What if we receive GPS position right after another task

starts running?
• Have to wait for Rec, Sw, LCD before we start decoding

position with Dec.
• Have to wait for Rec, Sw, LCD, Dec, Check before we know

if we are approaching a speed limit change!
• One needs to be able to define tasks and to

schedule them based on priority and preemption
• Need for a RTOS !

[Ayr/c.04] ISC-ID-2 // 2023-2024 5

ANOTHER CASE IN POINT

• What about interrupt handling?
• Consider reacting to user input (e.g. pressing a

button). How to handle it?
• Polling – use software to regularly check it

• Slow
• Wasteful of CPU time
• Scales badly

• Interrupt – use special hardware in MCU to detect even and
run the Interrupt Service Routine (ISR) in response
• Efficient
• Fast
• Scales well

[Ayr/c.04] ISC-ID-2 // 2023-2024 6

INTERRUPT PROCESSING SEQUENCE

• Main code is running
• Interrupt trigger occurs

• Processor does some hard-wired processing
• Processor executes the ISR, including return-from-interrupt instruction at the

end
• Processor resumes to main code

[Ayr/c.04] ISC-ID-2 // 2023-2024 7

Main Code

Hardwired CPU response
activities Interrupt Routine

Time

NEEDS FOR DEVELOPING IOT
EMBEDDED APPLICATIONS

• Define tasks and to schedule them as requested

• Handle interrupts in a proper way

• Care easily with power consumption.

• Encapsulation of main functionalities into properly

designed APIs

[Ayr/c.04] ISC-ID-2 // 2023-2024 8

INTRODUCTION TO MBED-OS

• What is Mbed OS?
• Easy prototyping
• For ARM Cortex-M-based microcontrollers

• The Mbed OS platform provides
• Open software libraries
• Open hardware designs
• Tools for professional rapid prototyping of products

• The Mbed OS platform includes
• C/C++ Software Development Kit (SDK)
• A microcontroller Hardware Development Kit (HDK) and

supported development boards
• Off-line and online IDEs

[Ayr/c.04] ISC-ID-2 // 2023-2024 9

USING AN OS VS LOW-LEVEL
PROGRAMMING

• Low-level Programming: great flexibility but
• Low productivity
• Less portable from one device to another device
• Code is more difficult to read, reuse, and maintain

• With high-level APIs, we may achieve:
• Higher productivity (less development time)
• Portability across devices
• Code easier to read, reuse and maintain by others
• Sometimes, even more efficient code (code density and

performance)

[Ayr/c.04] ISC-ID-2 // 2023-2024 10

MBED OS ARCHITECTURE

[Ayr/c.04] ISC-ID-2 // 2023-2024 11

mbed API

mbed Common

mbed HAL API

mbed HAL Implementation

CMSIS-CORE

MCU Registers

MCU independent

MCU dependent

MCU hardwareCortex-M0

mbed SDK

Application

Connectivity and security: Mbed OS includes many
APIs like TLS, Crypto, BLE, Cellular, IP, etc.

MBED OS ARCHITECTURE

[Ayr/c.04] ISC-ID-2 // 2023-2024 12

WHY C++ RATHER THAN C

• Demonstrate how blinky (using GPIO) can be
programmed at different levels, using libraries from
the lowest layer to the highest layer

[Ayr/c.04] ISC-ID-2 // 2023-2024 13

 MCU register layer

Blinky example by poking registers

 CMSIS-CORE

Blinky example using CMSIS-CORE structures

 mbed HAL API

Blinky example using mbed HAL API functions

 mbed API

Blinky example using mbed API functions

Control GPIO using mbed API

Control GPIO using mbed HAL API

GPIO mbed HAL Implementation

CMSIS-CORE Targeting at MCU

MCU GPIO Registers

Low-level

High-level

TASKS/THREAD IN MBED-OS

• For handling and scheduling parallel tasks, Mbed

OS provides a Thread API

• Creation with or without dynamic memory (heap memory)

• Internal thread data structures hidden in the C++ class.

• By default, the thread stack is allocated on the heap.

• If you don't want to use dynamic memory for the stack, you

can provide your own static memory using the constructor

parameters.

[Ayr/c.04] ISC-ID-2 // 2023-2024 14

	��Internet des Objets�RTOS PROGRAMMING for the internet of things
	WHY A RTOS ?
	A CASE IN POINT
	A CASE IN POINT
	A CASE IN POINT
	ANOTHER CASE IN POINT
	INTERRUPT PROCESSING SEQUENCE
	NEEDS FOR DEVELOPING IOT EMBEDDED APPLICATIONS
	INTRODUCTION TO MBED-OS
	USING AN OS VS LOW-LEVEL PROGRAMMING
	MBED OS ARCHITECTURE
	MBED OS ARCHITECTURE
	WHY C++ rather than C
	TASKS/THREAD IN MBED-OS

