
S E R G E A Y E R - H E I A - F R – T É L É C O M M U N I C A T I O N S
C L A S S E S I S C - 2 D / / 2 0 2 3 - 2 0 2 4

INTERNET DES OBJETS
RTOS PROGRAMMING FOR THE

INTERNET OF THINGS

WHY A RTOS ?

• RTOS stands for Real-time Operating Systems
• Designed to meet timing constraints

• Hard real-time – critical tasks have to be completed on time
• Soft real-time – may continue finishing the task even missing the

deadline

• The key design requirement is predictability and
determinism

• So is the solution a huge sequential loop ?
• Poor predictability and extensibility

• With RTOS, encapsulate each computation request
into a task and schedule tasks on demand

[Ayr/c.04] ISC-ID-2 // 2023-2024 2

A CASE IN POINT

• GPS based speed limit alarm with moving map
• Sounds alarm when approaching a speed limit change
• Display vehicle’s position on LCD
• Let user confirm automatic speed change
• Log applied speed limit and car’s position

• Tasks:
• Decode GPS information to find current vehicle position
• Check to see if approaching any speed limit change

location
• Record position to flash memory
• Read user input
• Update LCD

[Ayr/c.04] ISC-ID-2 // 2023-2024 3

Dec
Check

Rec

Sw
LCD

Time

Dec
Check

Rec

Sw
LCD

A CASE IN POINT

• How to implement this behaviour in a super loop?
• Do tasks run in the same order every time?
• Allow pre-emption?

• Super-loop implementation is simple but…

• Always run the same schedule, regardless of changing
conditions and relative importance of tasks.

• All tasks run at the same rate. Changing rates requires adding
extra calls to the function (e.g. requiring user input multiple
times)

• Maximum delay is the sum of all task run times.
Polling/execution rate is equal to 1/maximum delay.

[Ayr/c.04] ISC-ID-2 // 2023-2024 4

Dec Check Rec Sw LCD Dec

A CASE IN POINT

• This approach is simple but it has many drawbacks
• What if we receive GPS position right after another task

starts running?
• Have to wait for Rec, Sw, LCD before we start decoding

position with Dec.
• Have to wait for Rec, Sw, LCD, Dec, Check before we know

if we are approaching a speed limit change!
• One needs to be able to define tasks and to

schedule them based on priority and preemption
• Need for a RTOS !

[Ayr/c.04] ISC-ID-2 // 2023-2024 5

ANOTHER CASE IN POINT

• What about interrupt handling?
• Consider reacting to user input (e.g. pressing a

button). How to handle it?
• Polling – use software to regularly check it

• Slow
• Wasteful of CPU time
• Scales badly

• Interrupt – use special hardware in MCU to detect even and
run the Interrupt Service Routine (ISR) in response
• Efficient
• Fast
• Scales well

[Ayr/c.04] ISC-ID-2 // 2023-2024 6

INTERRUPT PROCESSING SEQUENCE

• Main code is running
• Interrupt trigger occurs

• Processor does some hard-wired processing
• Processor executes the ISR, including return-from-interrupt instruction at the

end
• Processor resumes to main code

[Ayr/c.04] ISC-ID-2 // 2023-2024 7

Main Code

Hardwired CPU response
activities Interrupt Routine

Time

NEEDS FOR DEVELOPING IOT
EMBEDDED APPLICATIONS

• Define tasks and to schedule them as requested

• Handle interrupts in a proper way

• Care easily with power consumption.

• Encapsulation of main functionalities into properly

designed APIs

[Ayr/c.04] ISC-ID-2 // 2023-2024 8

INTRODUCTION TO MBED-OS

• What is Mbed OS?
• Easy prototyping
• For ARM Cortex-M-based microcontrollers

• The Mbed OS platform provides
• Open software libraries
• Open hardware designs
• Tools for professional rapid prototyping of products

• The Mbed OS platform includes
• C/C++ Software Development Kit (SDK)
• A microcontroller Hardware Development Kit (HDK) and

supported development boards
• Off-line and online IDEs

[Ayr/c.04] ISC-ID-2 // 2023-2024 9

USING AN OS VS LOW-LEVEL
PROGRAMMING

• Low-level Programming: great flexibility but
• Low productivity
• Less portable from one device to another device
• Code is more difficult to read, reuse, and maintain

• With high-level APIs, we may achieve:
• Higher productivity (less development time)
• Portability across devices
• Code easier to read, reuse and maintain by others
• Sometimes, even more efficient code (code density and

performance)

[Ayr/c.04] ISC-ID-2 // 2023-2024 10

MBED OS ARCHITECTURE

[Ayr/c.04] ISC-ID-2 // 2023-2024 11

mbed API

mbed Common

mbed HAL API

mbed HAL Implementation

CMSIS-CORE

MCU Registers

MCU independent

MCU dependent

MCU hardwareCortex-M0

mbed SDK

Application

Connectivity and security: Mbed OS includes many
APIs like TLS, Crypto, BLE, Cellular, IP, etc.

MBED OS ARCHITECTURE

[Ayr/c.04] ISC-ID-2 // 2023-2024 12

WHY C++ RATHER THAN C

• Demonstrate how blinky (using GPIO) can be
programmed at different levels, using libraries from
the lowest layer to the highest layer

[Ayr/c.04] ISC-ID-2 // 2023-2024 13

 MCU register layer

Blinky example by poking registers

 CMSIS-CORE

Blinky example using CMSIS-CORE structures

 mbed HAL API

Blinky example using mbed HAL API functions

 mbed API

Blinky example using mbed API functions

Control GPIO using mbed API

Control GPIO using mbed HAL API

GPIO mbed HAL Implementation

CMSIS-CORE Targeting at MCU

MCU GPIO Registers

Low-level

High-level

TASKS/THREAD IN MBED-OS

• For handling and scheduling parallel tasks, Mbed

OS provides a Thread API

• Creation with or without dynamic memory (heap memory)

• Internal thread data structures hidden in the C++ class.

• By default, the thread stack is allocated on the heap.

• If you don't want to use dynamic memory for the stack, you

can provide your own static memory using the constructor

parameters.

[Ayr/c.04] ISC-ID-2 // 2023-2024 14

	��Internet des Objets�RTOS PROGRAMMING for the internet of things
	WHY A RTOS ?
	A CASE IN POINT
	A CASE IN POINT
	A CASE IN POINT
	ANOTHER CASE IN POINT
	INTERRUPT PROCESSING SEQUENCE
	NEEDS FOR DEVELOPING IOT EMBEDDED APPLICATIONS
	INTRODUCTION TO MBED-OS
	USING AN OS VS LOW-LEVEL PROGRAMMING
	MBED OS ARCHITECTURE
	MBED OS ARCHITECTURE
	WHY C++ rather than C
	TASKS/THREAD IN MBED-OS

