

INTERNET DES OBJETS LOW POWER WIDE AREA NETWORKS: INTRODUCTION

SERGE AYER - HEIA-FR - TÉLÉCOMMUNICATIONS CLASSES ISC-ID-2/ 2023-2024

- Things are installed in the field on residential premises, public places or industrial plant sites
- The use of short range radio is possible, but it also has drawbacks:
 - It requires the use of a short range radio gateway
 - The gateway is typically connected to the on-site wired network (not under control of the IoT provider)
 - The setup may be complicated due to the implications of wired on-site connectivity (firewalls, NAT, port and protocol filtering, etc.)

Source: https://www.slideshare.net/PeterREgli/Ipwan

- Short-range radio devices get access to the Internet through a gateway that is connected to the on-site wired network
- Requires a setup that may be complicated.

- A solution to this issue is to allow direct long range connectivity for IoT end devices
 - Using a base station serving a large number of devices
 - Costs are reduced by the scale factor
 - The base station is under control of the IoT provider
 - The wireless part implements a star topology
 - The network servers are responsible for translating IoT protocols to application protocols (HTTP)

[Ayr/c.10] ISC-ID-2 2023-2024

- Another solution is to provide indirect device connectivity through a long range gateway
 - In setups where end devices cannot be directly reached through a long range base station
 - Mix of short and long range radio, with a gateway usually running on main power

CONNECTIVITY OPTIONS

- Choosing connectivity is complex
- A lot of features and benefits, often conflicting, have to be balanced
 - Capacity
 - Quality of Service (QoS)
 - Range
 - Reliability
 - Battery life
 - Security
 - Cost
 - Proprietary vs Standard
 - Licensed or not / Worldwide availability

- Capacity: has to be adapted to IoT needs, meaning
 - Short messages
 - Random timing
 - Power adjustment
 - Multiple overlapping networks
 - Supporting broadcast/multicast
- Quality of service:
 - Allowing fully acknowledged transmissions
 - Depends on physical and upper protocol layers
- Long range:
 - In urban and rural environment
 - Typically, 2 km in an urban environment
 - Range vs. Data rate: long range requires a large link budget

- Reliability driven by the use case
 - Cases where cost and power consumption are not critical and where QoS and reliability are priorities
 - Or alternatively cases where cost and power consumption are critical
 - Interference may cause lack of reliability
- Power
 - Needs ultra-low energy consumption when operating on battery
 - Is highly dependent on idle, receiving and transmitting times
 - Depends on scenario but must be carefully designed

Security

- Keep data and privacy secure
- End-device / station authentication
- Encryption
- Prevention of attacks
- Embed or not a secret within the end-device (such as the secret embedded in each SIM card)
- Cost: Low cost and complexity are often required
- Open or proprietary
 - Historically, only open standards have delivered sustainable wireless technologies
 - This is a condition for stimulating competition, allowing interoperability

- Licenced vs Unlicensed
 - Every country has different rules about using the sub-GHz spectrum
- Availability worldwide
 - In the sub-GHz spectrum, no single band is available worldwide
 - The only ISM band available worldwide is the 2.4 GHz ISM band
- Localization capabilities
 - Localization is a very useful feature for many IoT scenariis, but no or very few communication technologies provide this feature

THE SWEET SPOT FOR LPWAN

RANGE CAPABILITY

WHY LPWAN FOR THE IOT?

- When long-range is required
- Because standard cellular networks:
 - Are costly (hardware and services)
 - Consume a lot of power
- LPWAN is suited for
 - Connecting devices that need to send small amounts of data
 - Over a long range
 - While maintaining long battery life
- Many IoT applications
 - Only need to transmit very little amount of data
 - Require low power consumption
 - With minimal cost
- The match between LPWAN and IoT exists

AREAS FOR APPLICATIONS USING LPWAN

- In cities or buildings
 - Lighting controllers in cities
 - Asset tracking in campus
 - Large building control and monitoring
- In rural environments (at the neighborhood level)
 - Metering
 - Agriculture
 - Environmental sensors

LPWAN OPTIONS

- Many options that are all subject to the same fundamental laws of physics
 - Relationship between range, data rate and transmit power
 - Greater range means reduced data rate or increased transmit power
 - Higher data rate means shorter range at constant transmit power
 - Lower transmit power means shorter range or lower data rate.
- Ultimately, the use case determines what the best compromise is

LPWAN FROM A MODULATION PERSPECTIVE

- Ultra narrow band
 - Concept: reduce the amount of noise entering the receiver by reducing the transmission bandwidth
 - By reducing the noise floor, the range is increased for a low transmit power.
 - But a ultra narrow channel can only carry low data rates and bidirectional communication is not really possible.
- Narrow band
 - Compromise between ultra narrow and wide bands, usually with a bandwidth of 12.5 kHz
 - Good compromise regarding QoS, cost and network efficiency, for uplink dominated traffic

LPWAN FROM A MODULATION PERSPECTIVE

Wide band

- Wide channel around 500 kHz to over 1 MHz
- Use spreading of the data to gain range.
- Flexible approach because:
 - The spreading factor can be varied depending on the channel conditions
 - High data rates can be achieved in smaller cells
- However, end devices and base stations need to share the same spectrum
 - For avoiding collisions, different spreading factors must be used
 - Not very easy to implement.

LPWAN OPTIONS

LoRa/LoRaWAN

- Uses the LoRa physical layer (provided by Semtech)
- Through the LoRa Alliance, promotes an open standard for the upper layer (MAC)
- Allows private deployments
- Symphony Link (by Link Labs)
 - Uses the LoRa Physical Layer
 - Does not use the LoRaWAN MAC layer
 - Proprietary openness not very clear

- Sigfox:
 - For sending very small amount of data (12 bytes) very slowly (300 baud)
 - Uses BPSK
 - Well suited for basic alarm systems, location monitoring and simple metering
 - The RF chip is manufactured by a number of vendors like TI or Silicon Labs
 - Must use the infrastructure provided by Sigfox coverage dependent on Sigfox deployment plan

Weightless

- Open standard, allowing open software innovation
- Three standards:
 - Weightless-N: one-way communication, very long battery life
 - Weightless-P: two-way communication, shorter battery life
 - Weightless-W: most extensive option, shortest battery life, more expensive
- Weightless SIG (Special interest group)

- Ingenu (formerly On-Ramp)
 - Wireless technology called Random Phase Multiple Access (RPMA)
 - Member of IEEE 802.15.4k
 - Uses the 2.4 GHz ISM band
 - Not well suited for battery-powered applications
 - Is not an open standard
- Nwave
 - Using ultra narrowband (UNB) radio
 - Operating in sub-GHz ISM bands

LORAWAN ARCHITECTURE

LORA RADIO

LORAWAN AT HEIA-FR

[Ayr/c.10] ISC-ID-2 2023-2024

CELLULAR TECHNOLOGIES FOR THE IOT?

- Cellular technologies were designed for human-tohuman communications
 - Designed for supporting high data rate and high mobility
 - High power
 - Up to 31 dBm output power
 - Wideband communication
 - Complex transceiver
 - Limited user capacity
- IoT requires low power
 - Low data rate is not an issue
 - Low mobility is not an issue

CELLULAR TECHNOLOGIES FOR THE IOT?

- Cellular technologies must be adapted for matching those needs, while reusing the existing infrastructure
 - Improved coverage
 - 20dB better
 - Low power consumption
 - 10 years battery life
 - Low cost
 - Terminal (end-device) cost < \$5

CELLULAR TECHNOLOGIES FOR THE IOT?

