

INTERNET DES OBJETS BLUETOOTH LOW ENERGY

SERGE AYER - HEIA-FR - TÉLÉCOMMUNICATIONS CLASSES ISC-2D // 2023-2024

WHY BLUETOOTH LOW ENERGY ?

- Bluetooth Low Energy has been adopted on all smartphones and tablet platforms
 - Full smartphone connectivity and interoperability
- The entire stack has been standardized for ensuring interoperability at the application level
- Low power
- Low cost
- Prediction:
 - Bluetooth (Low Energy) will be to smartphones what USB is to PCs
 - Connecting a smartphone to any device will happen through Bluetooth (Low Energy)

WHY BLUETOOTH LOW ENERGY ?

WHAT IS BLUETOOTH ?

- Wireless technology
- For short-range communications systems intended to replace the cables
- Operates in the 2.4 GHz ISM (Industrial, Scientific and Medical) band
- Uses FHSS (Frequency Hopping Spread Spectrum) to combat interference
- Range up to 100 m based on the radio class
- No line of sight required

WHAT IS BLUETOOTH ?

- Two Forms
 - BR/EDR Basic Rate/Enhanced Data Rate
 - Low Energy(BLE)
- Both forms include
 - Device discovery
 - Connection establishment and management
 - Data Transfer

BLUETOOTH TECHNOLOGY EVOLUTION

... AND NOT BLE 5 IS THE NEW **STANDARD**

Power Consumption

ANOTHER STEP IN MAKING BLE A TECHNOLOGY FOR THE IOT

[Ayr/c.06] ISC-ID-2 // 2023-2024

BLE MESH IS ALSO PART OF THE GAME SINCE 2017

Figure 1 - example topology of a mesh network

[Ayr/c.06] ISC-ID-2 // 2023-2024

BLUETOOTH ECOSYSTEM TODAY

WHAT MAKES BLE DIFFERENT ?

- Intimately tied to the phenomenal growth in smartphones, tablets and mobile computing.
- Need for connectivity with the outside world on these devices
 - Low barrier to adoption
- Task-specific, creating and innovative products on a relatively modest design budget
 - SoC solutions can be bought under \$2, in low volumes

WHAT MAKES BLE DIFFERENT ?

- Is an extensible framework to exchange data among devices, unlike other standards
 - Bluetooth 4.0 released in 2010
 - Bluetooth 4.1 released in December 2013
 - Bluetooth 4.2 released in December 2014
 - Bluetooth 5.0 released in December 2016
- No licensing costs, no fees, lean overall protocol stack
- Last but not least: It is Low Energy !

DEVICE CONFIGURATIONS

- Pre-4.0: only BR (Basic Rate) / EDR (Enhanced Data Rate) mode
- 4.x Single-Mode (Bluetooth Smart): only BLE
 - Can communicate with Single-Mode and Dual-Mode devices – not with pre-4.0 devices supporting only BR/EDR
- 4.x Dual-Mode (Bluetooth Smart Ready): both BR/EDR and BLE
 - Can communicate with any Bluetooth device

DEVICE CONFIGURATIONS

MAIN BLOCKS IN THE PROTOCOL STACK

CHIP CONFIGURATIONS

BLE LIMITATIONS

Data throughput

- Modulation rate at about 1 Mbps, as a theoretical upper limit for the throughput that can be provided
- There are other limiting factors
 - Bidirectional traffic
 - Protocol overhead
 - CPU, radio limitations
 - Software
- In practice, plan about 5-10 kBytes/sec

BLE LIMITATIONS

- Never forget: BLE was designed to achieve the lowest power protocol possible
 - Achieved by using short burst of packets (during a connection event) at a certain frequency (connection interval), switching the radio off in between
- Operating range
 - Depends on many factors such as the operating environment, the antenna design, the device orientation, etc..
 - Focused on short-range communication
 - Transmit power can be configured, again for optimized battery lifetime
 - Typically 2-5 meters, possible up to 30-100 meters line-of-sight

NETWORK TOPOLOGY

- Two ways of communicating
 - Broadcasting (the so-called Beacons or iBeacons)
 - Within connections
- Broadcasting
 - Send data out to scanning devices
 - Roles in the topology
 - Broadcaster: sends non-connectable advertising packets
 - Observer: scan those packets
 - It is the only way for a device to transmit data to more than one device at a time
 - No security or privacy

NETWORK TOPOLOGY: BROADCASTING

- Required for transmitting data in both directions
- Required if more payload is requested than available in advertising packets
- Exclusive, permanent, periodical data exchange with packets between two devices (it is thus private - outside sniffing)

NETWORK TOPOLOGY: CONNECTIONS PERIPHERAL PERIPHERAL DEVICE DEVICE CONNECTED TOPOLOGY CENTRAL PERIPHERAL PERIPHERAL DEVICE (PHONE, TABLET, DEVICE DEVICE COMPUTER) PERIPHERAL PERIPHERAL DEVICE DEVICE

- Roles in the topology
 - Central or Master:
 - Listen for connectable advertising packets
 - Initiates the connection
 - Manages timing and initiates data exchanges
 - Peripheral or Slave:
 - Sends advertising packets
 - Accepts incoming connection requests (and stops advertising when connected)
 - Follows central's timing and exchanges data with it

- A device can act as a central and peripheral at the same time (since 4.1)
- A central can be connected to multiple peripherals
- A peripheral can be connected to multiple centrals (since 4.1)

- Rich, layered data model: data is organized around units called services and characteristics (specified in the Generic Attribute Profile or GATT)
 - Multiple services organized in a meaningful structure
 - Services can contain multiple characteristics
 - Characteristics can define their own access rights and descriptive metadata
- Uses less power than in broadcast mode
 - Can extend the delay between connection events
 - Can push large chunks of data upon data changes only
 - Timing for connection events is known from both peers

NETWORK TOPOLOGY: MIXED TOPOLOGY

PROTOCOLS VS. PROFILES

- Clear separation between protocols and profiles
- Protocols
 - Layers that implement the different packet formats, routing, multiplexing, encoding, and decoding
- Profiles
 - Functionality covering
 - Basic modes of operation for all devices (Generic Access Profile (GAP) or Generic Attribute Profile (GATT))
 - Specific standardized use cases (e.g. Proximity Profile, Environmental Sensing Profile)
 - Vendor specific profiles
 - Defines how protocols must be used to achieve a particular goal

PROTOCOLS VS. PROFILES

GENERIC PROFILES: GAP

- Generic Access Profile (GAP)
 - Roles, procedures and modes to
 - Broadcast data
 - Discover devices
 - Establish connections
 - Manage connections
 - Negotiate security levels
 - Is the topmost control layer
 - Mandatory for all BLE devices

GENERIC PROFILES: GATT

- Generic Attribute Profile (GATT)
 - Data model and procedures to discover, read, write and push data elements between devices
 - Is the topmost data layer
 - (Almost) mandatory other ways of exchanging data have been introduced with 4.1

USE CASE SPECIFIC PROFILES

- Proximity profile
 - Detects the presence or absence of nearby devices
 - Use case: beep if a piece of luggage is beyond a certain distance
- Health Thermometer Profile
 - Transfers body temperature readings over BLE
- Cycling Speed and Cadence Profile
 - Allows sensors on a bicycle to transfer speed and cadence data to a smartphone or tablet
- Vendor specific profiles
 - Can be kept private or be published

BLUETOOTH STACK: PHYSICAL LAYER

PHYSICAL LAYER

- 2.4 GHz ISM (Industrial, Scientific, and Medical) band
- 40 channels from 2.4000 GHz to 2.4835 GHz
- 37 channels for connections, 3 channels for advertising

PHYSICAL LAYER: FREQUENCY HOPPING

- Frequency hopping spread spectrum
 - Rapid switching among many frequency channels
 - channel = (curr_channel + hop) mod 37
 - Hop value communicated when the connection is established
 - Minimizes the effect of radio interference potentially present in the band (Wifi and classic Bluetooth)
 - Modulation rate is fixed at 1Mbit/s (upper physical throughput limit)

[Ayr/c.06] ISC-ID-2 // 2023-2024

PHYSICAL LAYER

[Ayr/c.06] ISC-ID-2 // 2023-2024

BLUETOOTH STACK: LINK LAYER

LINK LAYER

- Interface to the physical layer
- Interfaces to the higher layers through the Host Controller Interface (HCI)
- Implemented as a combination of software and hardware
 - Has hard real-time constraints

LINK LAYER

- Defines the following roles:
 - Advertiser: a device sending advertising packets
 - Scanner: a device scanning for advertising packets
 - Master: a device that initiates a connection and manages it
 - Slave: a device that accepts a connection and follows the master's timing
- Defines the device addresses (acting like MAC addresses)
 - Public, fixed factory-programmed (must be registered with the Registration Authority)
 - Random, pre-programmed or dynamically generated

LINK LAYER: PACKETS

• One packet format

LSB				
Preamble	Access Address	PDU	CRC	
(1 octet)	(4 octets)	(2 to 39 octets)	(3 octets)	

Figure 2.1: Link Layer packet format

- Two packet types: advertising and data
- Preamble:
 - Used for frequency synchronization and timing at the receiver
 - Fixed for advertising packets
- Access address:
 - Fixed for advertising packets
- PDU (Protocol Data Unit)
 - Advertising Channel PDU
 - Data Channel PDU

- Two purposes
 - For advertising data outside of a connection
 - For device (slave) discovery for establishing a connection
- Sent over the air without knowing whether a scanner is present
- Sent at fixed rates, between 20 ms and 10.24 secs
- Sent over the 3 advertising channels

Advertising channel PDU

LSB	MSB	
Header	Payload	
(16 bits)	(as per the Length field in the Header)	

Figure 2.2: Advertising channel PDU

Advertising channel PDU header

LSB					MSB
PDU Type	RFU	TxAdd	RxAdd	Length	RFU
(4 bits)	(2 bits)	(1 bit)	(1 bit)	(6 bits)	(2 bits)

Figure 2.3: Advertising channel PDU Header

[Ayr/c.06] ISC-ID-2 // 2023-2024

- Advertising packet
 - Sent by the Link Layer in the Advertising State
 - Received by a Link Layer in the Scanning or Initiating State
- Advertising packets have three different properties:
 - Connectability:
 - tells to the scanner whether the advertiser may accept a connection (connectable/non-connectable)
 - Scannability:
 - tells to the scanner whether the advertiser may accept a scan request (scannable/non-scannable)
 - Directability:
 - tells whether the advertising packet is directed at a specific scanner or not (directed/undirected)
 - It if is directed, then the packet contains only the advertiser's and scanner's addresses and it is thus connectable.

- ADV_IND: Connectable Undirected Advertising
 - Connectable, Scannable, Not Directed
 - Payload

Payload				
AdvA	AdvData			
(6 octets)	(0-31 octets)			

Figure 2.4: ADV_IND PDU Payload

- AdvA: Advertiser's public or random device address (indicated by TxAdd)
- AdvData: Advertising data from the advertiser's host

- ADV_DIRECT_IND: Connectable Directed Advertising
 - Connectable, Not Scannable, Directed
 - Payload

Payload				
AdvA InitA				
(6 octets) (6 octets)				

Figure 2.5: ADV_DIRECT_IND PDU Payload

- AdvA: Advertiser's public or random device address, as indicated by TxAdd
- InitA: Public or random address of the device to which this PDU is addressed, as indicated by RxAdd
- Designed for allowing fast reconnection, with very specific timing requirements

- ADV_NONCONN_IND: Non-Connectable Undirected Advertising
 - Not Connectable, Not Scannable, Not Directed
 - Payload

Payload					
AdvA	AdvData				
(6 octets)	(0-31 octets)				

Figure 2.6: ADV_NONCONN_IND PDU Payload

- AdvA: Advertiser's public or random device address, as indicated by TxAdd
- AdvData: Advertising data from the advertiser's host

- ADV_SCAN_IND: Scannable Undirected Advertising
 - Not Connectable, Scannable, Not Directed
 - Payload

Payload			
AdvA AdvData			
(6 octets) (0-31 octets)			

Figure 2.7: ADV_SCAN_IND PDU Payload

- AdvA: Advertiser's public or random device address, as indicated by TxAdd
- AdvData: Advertising data from the advertiser's host

• Scan interval and scan windows influences the discovery speed, but also the power consumption

Scanner scan interval = 50 msScanner scan window = 25 ms

Advertising on 37, 38 and 39 Advertiser Advertising Interval = 20 ms

Passive scanning

- Scanner simply listens
- Advertiser does not know whether any scanner received any packet

Active scanning

- Scanner issues a ScanRequest packet after receiving an advertising packet
- Advertiser responds with a Scan Response packet
- This mechanism doubles the effective payload that the advertiser is able to send to the scanner, without connection
- This does not allow data transfer from the scanner to the advertiser

• SCAN_REQ:

- Sent by the Link Layer in the Scanning State
- Received by a LinkLayer in the Advertising State
- Payload

Payload			
ScanA AdvA			
(6 octets) (6 octets)			

Figure 2.8: SCAN_REQ PDU Payload

- ScanA: Scanner's public or random device address, as indicated by TxAdd
- AdvA: Advertiser's public or random device address, as indicated by RxAdd

- SCAN_RSP:
 - Sent by the Link Layer in the Advertising State
 - Received by a LinkLayer in the Scanning State
 - Payload

Payload				
AdvA	ScanRspData			
(6 octets)	(0-31 octets)			

Figure 2.9: SCAN_RSP PDU payload

- AdvA: Advertiser's public or random device address, as indicated by TxAdd
- ScanRspData: any data from the advertiser's Host

LINK LAYER: ADVERTISING CHANNEL

Advertising channel PDU Type

PDU Type b ₃ b ₂ b ₁ b ₀	Packet Name
0000	ADV_IND
0001	ADV_DIRECT_IND
0010	ADV_NONCONN_IND
0011	SCAN_REQ
0100	SCAN_RSP
0101	CONNECT_REQ
0110	ADV_SCAN_IND
0111-1111	Reserved

Table 2.1: Advertising channel PDU Header's PDU Type field encoding

[Ayr/c.06] ISC-ID-2 // 2023-2024

- A master scans for advertisers that are accepting connections
 - The master can filter such devices by device addresses or based on the advertising data (e.g. filtering for a specific service).
 - The master can use white lists for filtering devices.
- The master then sends a connection request packet to the slave and, provided that the slave responds, establishes a connection with the slave.
- The connection packet includes information about how the connection must be operated

• CONNECT_REQ:

- Sent by the Link Layer in the Initiating State
- Received by the LinkLayer in the Advertising State
- Payload

Payload							
InitA	LLData						
(6 octets)	(6 octets)	(22 octets)					

Figure 2.10: CONNECT_REQ PDU payload

- InitA: Initiator's public or random device address, as indicated by TxAdd
- AdvA: Advertiser's public or random device address, as indicated by RxAdd
- LLData

LLData									
AA	CRCInit	WinSize	WinOffset	Interval	Latency	Timeout	ChM	Нор	SCA
(4 octets)	(3 octets)	(1 octet)	(2 octets)	(2 octets)	(2 octets)	(2 octets)	(5 octets)	(5 bits)	(3 bits)

[Ayr/c.06] ISC-ID-2 // Figure 2.11: LLData field structure in CONNECT_REQ PDU's payload

 A connection = sequence of data exchanges between the slave and the master at predefined times

[[]Ayr/c.06] ISC-ID-2 // 2023-2024

- Connection interval
 - Time between the beginning of two consecutive connection events
 - Ranges from 7.5 ms (high throughput) to 4 s (lowest possible throughput)
- Slave latency
 - Number of connection events that a slave can choose to skip without risking a disconnection
- Connection supervision interval
 - Maximum time between two received valid data packets before a connection is considered lost
- Hop increment
 - Defines the hopping sequence that both the master and the slave will follow during the lifetime of the connection